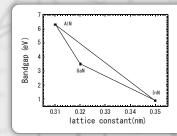


シュプリンガー・マテリアルズ


SpringerMaterials

Consult an Expert!

世界で最も大きな物理・化学・工学分野のファクトデータベース

検索事例集

事例 1. 半導体レーザー材料とそれら発光波長を調べる P.2
 事例 2.1 窒化ガリウムの電子の有効質量を調べる P.5
 2.2 窒化アルミニウムの電子の有効質量を調べる P.5
 2.3 窒化ガリウムの誘電率を調べる P.5
 事例 3.1 各種金属の炭素の溶解度を調べる P.6
 3.2 グラフェンのラマンスペクトルに関するデータを調べる P.7
 3.3 層状物質 MoS2 の光電子スペクトルを解析するため P.8
 電子状態に関するデータを調べる P.8

研究だけでなく教材にも

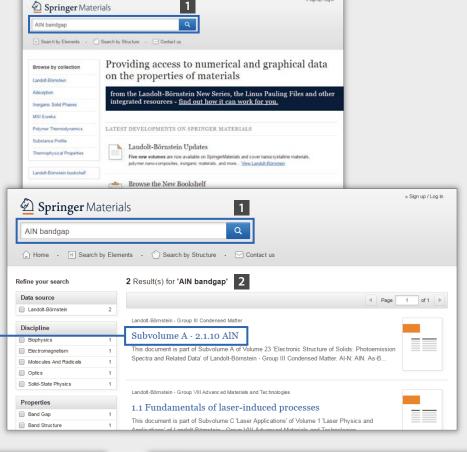
グラフプロットのためのデータも 簡単に検索できます!

化合物半導体材料の格子定数とバンドギャップ (事例1.より)

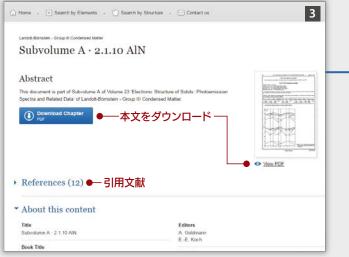
materials.springer.com 2 検索事例集

▶動画もみられます

youtube.com/SpringerJapanVideos

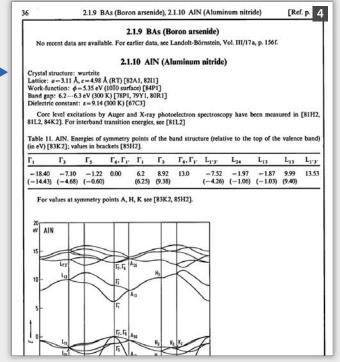

事例1.

半導体レーザー材料とそれら発光波長を知りたい。そこで、材料の窒化物半 導体の格子定数とバンドギャップを調べる。具体的には窒化アルミニウム (AIN)、窒化ガリウム(GaN)、窒化インジウム(InN)の三種類を対象とした。 研究上、GaNとInNのバンドギャップはそれぞれ3.4eV、0.7eVと覚えている ので、調べる必要はない。


1. AINのバンドギャップと格子定数

1 キーワード AIN bandgapで 検索する。

2 検索結果が表示される。



3 抄録ページ

4

AINについての本文をダウンロードすると、 lattice constant a=0.31nm, c=0.50nm, bandgap 6.2eVとわかる。



4. 結果

以上の検索結果を基にグラフを作成。 光源や太陽電池を作る際に、窒化物 を使えば赤外、可視、紫外まで対応 可能であることがわかる。

▶ References (37) ● 引用文献

· About this content

化合物半導体材料の 格子定数とバンドギャップ

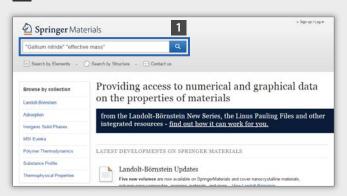
3 本文に六方晶 (Wurtzite/hexagonal) 構造での値が

示されている。安定相となる六方晶構造の値は

a=0.35nm、c=5.7nmとわかる。

▶ 動画もみられます

youtube.com/SpringerJapanVideos



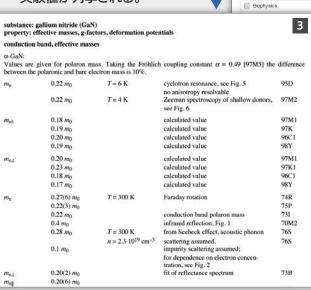
事例 2.1

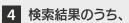
理論計算に用いるパラメータとして、電子の有効質量を「適切に」設定するため、 窒化ガリウム(GaN)の電子の有効質量を調べる。

1 キーワード "Gallium nitride" "effective mass" で検索する。

2 検索結果のうち、

Refine your search


Inorganic Solid Phase


Landolt-Börnstein

Discipline

"GaN, effective masses, g-factors, deformation potentials"をクリック。

3 本文をダウンロードすると、 1ページ目に、1998年まで (Referencesより)の計算値や 実験値が列挙される。

"GaN, hexagonal modification: effective-mass parameters" には、
最初の表に1996年~2006年(References より)の新しいデータが記載されているのがわかる。

5 結果

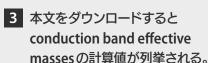
結果 窒化ガリウムの電子の有効質量は、以前から約0.2であると知っていたが、SpringerMaterialsで調べた結果、「0.208」「0.222」「0.230」といった報告例があることが短時間で判明した。

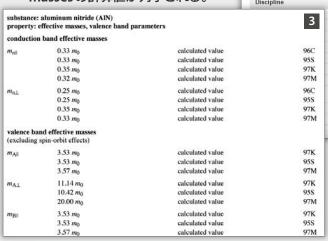
valence band effective masses

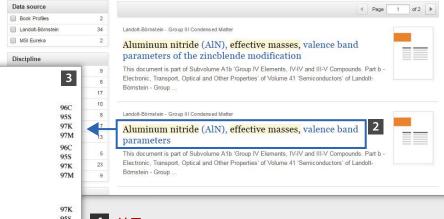
5 検索事例集 materials.springer.com

♪ 動画もみられます

youtube.com/SpringerJapanVideos


事例2.2


理論計算に用いるパラメータとして、電子の有効質量を「適切に」設定するため、 窒化アルミニウム(AIN)の電子の有効質量を調べる。


- 1 キーワード "aluminum nitride" "effective mass" で検索する。
- 2 検索結果のうち、

Refine your search

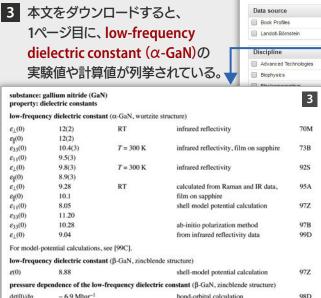
AIN, effective masses, valence band parameters をクリック。 38 Result(s) for "aluminum nitride" "effective mass"

4 結果

窒化アルミニウムの(伝導帯の)電子の有効質量として、 「0.25」「0.35」「0.33」といった報告例があることが 短時間で判明した。

▶ 動画もみられます

youtube.com/SpringerJapanVideos



事例2.3

理論計算に用いるパラメータとして、窒化ガリウム(GaN)の誘電率を調べる。

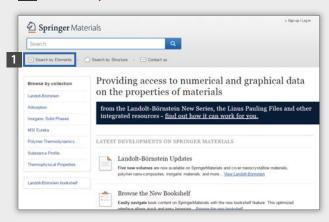
- 1 キーワード "gallium nitride" "dielectric constant" で検索する。
- **2** 検索結果のうち、"GaN, dielectric constants"をクリック。

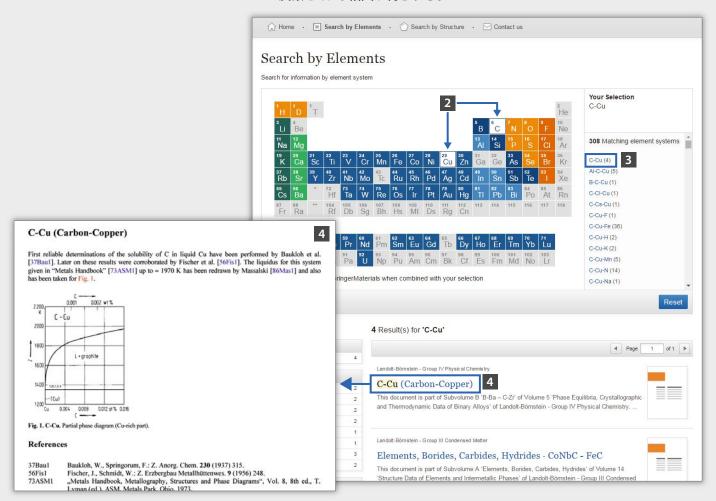
4 結果

窒化ガリウムの誘電率(低周波数、垂直方向)として、 実験値「9.04」や計算値「10.28」など、多くの報告例が あることが短時間で判明した。

♪ 動画もみられます

youtube.com/SpringerJapanVideos




事例3.1

化学気相成長(CVD)法によるグラフェンの作製において、触媒金属種の選択のため、各種金属の炭素の溶解度を調べる(例, Cu 触媒の炭素溶解度)。

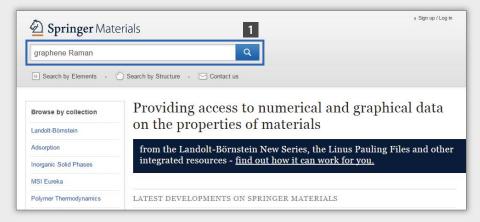
1 Search by Elements を選択する。

- 2 周期表(Periodic Table)の中で、炭素(C)と金属(例えばCu)をクリックする。
- 3 "C-Cu"を選択すると、下部に検索結果一覧が表示される。
- 4 検索結果のうち、"C-Cu(Carbon-Copper)"を選択すると、 炭素とCuの相図が得られる。

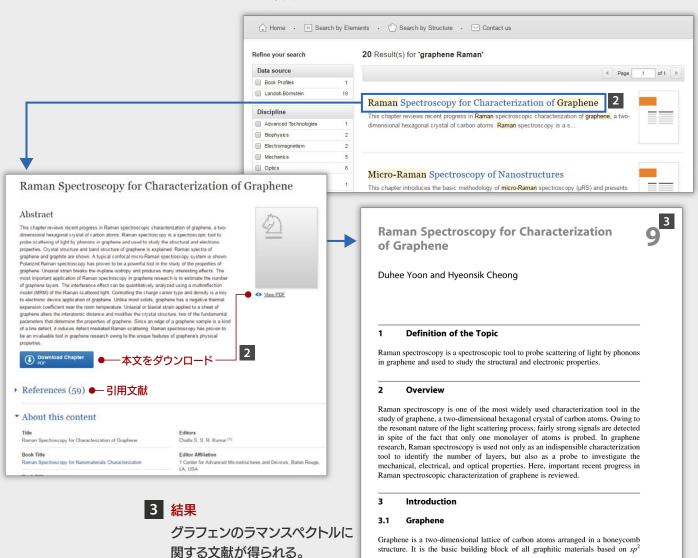
5 結果 1000°Cでは、0.001wt%以下の溶解度であることが判明した。

▶動画もみられます

youtube.com/SpringerJapanVideos



事例3.2

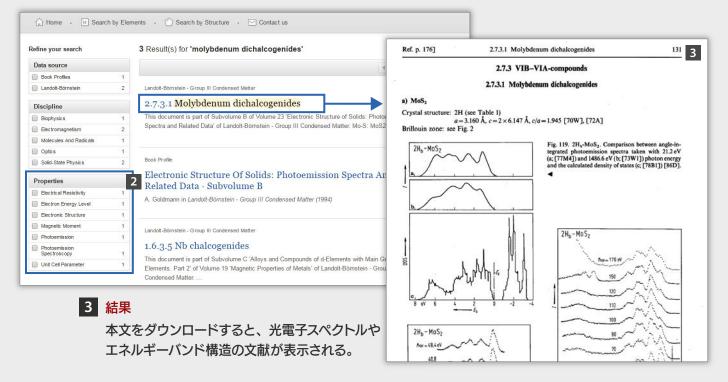

CVD 法で作製したグラフェンの評価のため、グラフェンのラマンスペクトルに関するデータを調べる。

1 キーワード"graphene Raman"を検索する。

2 検索結果のうち、

Raman Spectroscopy for Characterization of Graphene を選択し、 本文をダウンロードする。

materials.springer.com 8 検索事例集


事例3.3

層状物質、二硫化モリブデン(MoS2)の光電子スペクトルを解析するため、電子状態に関するデータを調べる。

1 キーワード molybdenum dichalcogenides と入力する。

2 Properties にある photoemission を選択する。

*2016年3月時点のスクリーンショットです。実際の画面とは異なる場合があります。

アブストラクトはどなたでも閲覧できます。 本文のダウンロードやレファレンス情報の閲覧には、ご契約が必要です。

materials.springer.com

お問い合わせは

シュプリンガー・マテリアルズに関するお問い合わせは

シュプリンガー・ネイチャー インスティテューショナル・マーケティング

- Email: market@springer.jp
- Tel: 03-4570-6710 Fax: 03-3267-8746

詳しい資料をシュプリンガー・ジャパンのホームページにご用意しています。

- springermaterials.jp(日本語情報ページ)
- springer.com/springermaterials (英語情報ページ)